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1 Introduction

In a recent report, Brinkmann, Derbenev, and Flöttman[1] have proposed a
method of delivering a flat electron beam from the source, thus potentially
obviating the necessity of a damping ring for electrons in a linear electron-
positron collider. In the Autumn of 1999, Helen Edwards and collaborators
observed a hint of this effect at Fermilab[2].

In this note, I wish first to develop the derivation presented by the authors
cited above in language more familiar to me. I am not doing anything original
here; I consider it an important result which deserves translation into other
language to aid in its understanding. Then, even though the currently installed
equipment at the A0 laboratory in Fermilab is not ideal for the purpose, I want
to comment on experiments that can be done to confirm their predictions. Sergei
Nagaitsev[3] has already proposed one configuration.

2 Basic Method

2.1 Sequence of Steps

1. A zero-emittance beam from a cathode immersed in a solenoidal field
developes an angular momentum at exit from the solenoid.

2. Pass the beam after exit through a quadrupole channel with a 900 phase
difference between the two transverse degrees of freedom, with scale length
defined by the solenoid field. For a skew quadrupole channel, the beam
can be flat in either transverse coordinate.

2.2 Simple Version

2.2.1 The Solenoid

Suppose that a cathode is inside a solenoid that produces a field Bz, where z
is the beam axis. Further, assume that the beam produced from the cathode
has zero emittance. Then the particles just travel along the field lines as they
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undergo acceleration within the gun, and nothing interesting happens until the
end of the solenoid is encountered.

A particle having charge e and momentum p0 exiting with transverse dis-
placements x = x0 and y = 0 will be deflected through an angle in the y
direction:

∆y′ =
1

(p0/e)

∫
Bxdz. (1)

Since ∇ ·B = 0, application of Gauss’ Law to a cylindrical surface of radius x0

that stretches through the end field gives

2πx0

∫
Bxdz = πx2

0Bz (2)

and so
∆y′ = kx0; k ≡ 1

2
Bz

(p0/e)
. (3)

Similarly, a particle displaced at y = y0 and x = 0 will experience a deflection

∆x′ = −ky0. (4)

In Eqs. 1 and 4, the approximation has been made that the change in the
transverse coordinates through the end of the solenoid can be neglected.

Looking downstream, the beam has taken on a clockwise rotation; an angular
momentum or vorticity, if you like. The initial state of a particle as it exits the
solenoid becomes 


x
x′

y
y′




0

=




x0

−ky0
y0
kx0


 . (5)

2.2.2 The Quadrupole Channel

Next pass the beam through an alternating gradient quadrupole channel. As-
sume that the channel is represented by an identity matrix in the x-direction
and has an additional 900 phase advance in y. A simple form for the 900 matrix
is (

0 β
− 1
β 0

)
(6)

where β is the amplitude function intrinsic to the channel, treated as a repetitive
structure.

We get the output state

x
x′

y
y′




1

=




1 0 0 0
0 1 0 0
0 0 0 β
0 0 − 1

β 0







x0

−ky0
y0
kx0


 =




x0

−ky0
kβx0

− 1
β y0


 . (7)
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If now we choose β = 1/k the particles end up with equal displacements in
x and y and travelling at equal angles in x and y. This describes a flat beam
inclined at an angle of 450 to the coordinate axes. Change to a skew-quadrupole
channel, and the flat beam can be aligned along either the horizontal or vertical
axis in the way that these coordinates are usually oriented in the laboratory.

If, between the solenoid end and entry to the quadrupole channel, the beam
undergoes a longitudinal acceleration from p0 to p1 without transverse momen-
tum change, then the initial state as given in Eq. 5 differs only in that the
parameter k is to be evaluated at momentum p1.

2.3 A More General Treatment

Let’s repeat the preceding calculation in somewhat greater generality and also
arrive at a flat beam in the more usual laboratory horizontal and vertical coor-
dinates. The 4 × 4 transport matrix from the end of the solenoid through the
skew quadrupole channel can be written in the form

M = R−1TR, (8)

where R is a coordinate rotation of 450 about the longitudinal axis:

R =
1√
2

(
I I
−I I

)
(9)

and I is the 2 × 2 identity matrix. In the rotated coordinates, T represents a
normal quadrupole channel, and so can be written

T =
(
A 0
0 B

)
, (10)

where A and B are 2× 2 matrices. Using Eqs. 9 and 10. Eq. 8 becomes

M =
1
2

(
A+B A−B
A−B A+B

)
. (11)

Rewrite the initial state given by Eq. 5 in terms of two-element column vectors:

X ≡
(

x0

−ky0

)
Y ≡

(
y0
kx0

)
. (12)

The relation between X and Y can be expressed in the form

Y = SX; S ≡
(

0 − 1
k

k 0

)
. (13)

With use of Eq. 13, the final state is(
X
Y

)
1

=
1
2

(
[A+B + (A−B)S]X
[A−B + (A+B)S]X

)
, (14)
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The condition for a flat beam in x is that Y1 vanish. Since x0 and y0 are
independent variables, this condition implies

A−B + (A+B)S = 0, (15)

or
I = −(A−B)−1(A+B)S (16)

Using the Courant-Snyder parameterization[4], A and B can be represented in
the form exp(Jµ) where J is the 2× 2 matrix

J =

(
α β

− 1+α2

β −α

)
, (17)

and µ is the phase advance. Assume that the J matrices of A andB are identical,
and that the phase advance of B exceeds that of A by ∆. Then Eq. 16 becomes

I = − cos(∆/2)
sin(∆/2)

JS = − cos(∆/2
sin(∆/2)

(
kβ −α

k

−kα 1+α2

kβ

)
(18)

from which it follows that α = 0, β = 1/k, and ∆ = 900.
If acceleration occurs between the solenoid end and the quadrupole channel,

β0 is evaluated at the momentum of entry to the channel, as discussed at the
end of Sec. 2.2.2.

3 Implementation with a Quadrupole Triplet

3.1 Symmetric Triplet

Brinkmann et al[1] use a symmetric quadrupole triplet as an example. I would
like to go through their example in some detail because it is a good illustration
of how this process works. Let’s use thin lenses, and quadrupole strengths will
be denoted by the symbol q, where q > 0 is the reciprocal of the focal length.

The initial value of the amplitude function, β0, is given by the solenoid
parameter k according to β0 = 1/k, and as shown above, the initial value of
its slope is characterized by α0 = 0. The first lens of the triplet will be some
distance D1 from the end of the solenoid. At the entry to this lens, we have

β1 = β0 +D12/β0 (19)
α1 = −D1/β0 (20)

and at the exit

α1x = α1 − q1β1 (21)
α1y = α1 + q1β1 (22)
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γ1x =
1 + α2

1x

β1
(23)

γ1y =
1 + α2

1y

β1
(24)

where, although we are in rotated coordinates, we retain the subscipts x and y.
Below, we will require that the phase advance in y will exceed that in x through
the triplet by 900.

Therefore after the first lens

βx = β1 − 2α1xz + γ1xz2 (25)
βy = β1 − 2α1yz + γ1yz2 (26)

All the action takes place between the first and the second lens. To establish a
900 phase difference through the symmetric triplet, a 450 phase difference must
be developed in the distance, D2. between the two lenses. This condition is∫ D2

0

(
1

βy(z)
− 1
βx(z)

)
dz = (27)

arctan
(

D2
β1 − α1yD2

)
− arctan

(
D2

β1 − α1xD2

)
=

π

4
. (28)

Think of the second lens as a pair of colocated half lense, each of strength
q2. After the first element of this pair, we want α = 0 in both of the transverse
degrees of freedom so that the exit values from the triplet will be the same as
the entry values. The condition that this be so is

αx(D2)
αy(D2)

= −βx(D2)
βy(D2)

. (29)

Eqs. 28 and 29 require solution for the two “unknowns” q1 and D2. I have not
been able to find a closed-form solution, but have had to use numerical methods.
However they are solved, the one remaining parameter of the triplet, q2, follows
from either

αx(D2) + q2βx(D2) = 0, (30)
αy(D2)− q2βy(D2) = 0 (31)

which is where Eq. 29 came from.

3.2 Arrangement at FNPL

We don’t have a symmetric triplet, so the preceding analysis does not tell us
how to adjust the quadrupole strengths. I was not able to extend the Courant-
Snyder parameter based approach to this case in any useful manner.

Until the first quadrupole is encountered, the system has rotational sym-
metry about the beam axis. The relation between X and Y stated in Eq. 13,
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Y = SX remains valid, but S will not longer have the simple form given there.
It will also include RF focusing effects.

Nevertheless, all we need for the moment is that a matrix S exists at any
point after the booster cavity, up to the first skew quadrupole. So defined,
S may include normal quadrupoles. Following the notation of the symmetric
case, let the three quadrupole strengths, B′"/(Bρ), be q1, q2, q3 separated by
distances D2 and D3 in downstream progression.

The matrix A of Eq. 15 is then

A =
(

1 0
q3 1

) (
1 D3
0 1

) (
1 0
q2 1

) (
1 D2
0 1

) (
1 0
q1 1

)
, (32)

with B differing in that all the qi change sign. From Eq. 32,

A+B
2

=
(

1 +D2D3q1q2 D2 +D3
D2q1q2 +D2q1q3 +D3q1q3 +D3q2q3 1 +D2D3q2q3

)
(33)

A−B
2

=
(

D2q1 +D3q1 +D3q2 D2D3q2
q1 + q2 + q3 +D2D3q1q2q3 D2q2 +D2q3 +D3q3

)
(34)

The 1, 1 and 1, 2 elements of Eq. 15 may be solved for q1 and q2. For q1, I
get1

q21 +
1− |S|
s1,2

q1 +
D2s1,1 − s1,2 +D2(D2 +D3)s2,1 − (D2 +D3)s2,2

D2(D2 +D3)s1,2
= 0, (35)

where the si,j are the elements of the matrix S and |S| stands for its determinant.
The second term in Eq. 35 vanishes because |S| = 1. At the exit from

the solenoid, we had Y0 = S0X0, where I’ve added some subscripts to Eq. 13.
Now we pass X and Y through non-coupling transformations Mx and My re-
spectively. These transformations include the booster cavity. At entrance to
the first skew quadrupole, Y = MyS0M

−1
x ; i.e., S = MyS0M

−1
x . Since the

determinant of a product of matrices is the product of their individual determi-
nants, the product of Lorentz factors introduced by the forward and backward
transformations through the booster cavity results in unit determinant.

Therefore, the solution to Eq. 35is

q1 = ±
√
−D2s1,1 − s1,2 +D2(D2 +D3)s2,1 − (D2 +D3)s2,2

D2(D2 +D3)s1,2
, (36)

q2 follows from

q2 = −s1,2 + (D2 +D3)s2,2
D2D3(1 + q1s1,2)

, (37)

and q3 can be found from either term in the second row of Eq. 15. The sign
selection in Eq. 36 depends the plane in which you wish the beam to be flat.

This foregoing paragraphs of this subsection were written in the context of
predicting settings for the skew quadrupoles given knowledge of the correlations

1With thanks to Yin-e Sun for algebraic repairs.
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in the incident beam expressed by the matrix S. At present the situation is that
we know the skew quadrupole settings for production of a flat beam rather well
from our measurements, whereas there are some remaining ambiguities in the
experimental determination of the transfer matrix through the booster cavity.
It could be useful to reverse the process and see what we can learn about S by
inverting Eq. 15.

4 Data Analysis[5]

4.1 General Approach

The rms emittance in one transverse degree of freedom is defined by

ε ≡
√
〈x2〉〈x′2〉 − 〈xx′〉2. (38)

At FNPL, the slit method of emittance measurement is used. At X3, a hor-
izontal slit system may be inserted for round beam measurements. At XL6
both horizontal and vertical slits may be inserted. The slits have an aperture
of 50µm, 1 mm spacing, and thickness of 6 mm in the beam direction.

If the beam were so large that slit aperture and spacing were negligible, many
downstream slit images could be used to evaluate Eq. 38, including the 〈xx′〉
correlation term. This is not the case for the narrow dimension of the flat beam.
Because the OTR screens are viewed from the side, the beam downstream of
the skew quadrupole system is oriented so that the narrow dimension, x, is
horizontal. On XL6, the beam is only a few hundred µm wide so (typically)
only a single slit is illuminated.

In the broad (vertical) dimension, a number of the horizontal slits are il-
luminated. If the angular momentum has been removed, the images will be
horizontal and information about the correlation term in this degree of freedom
can be obtained from the lateral offset of the images. In the data that I’ve seen,
this offset is negligible. So for the purposes of this experiment, I’ll assume that
the correlation term in Eq. 38 can be neglected and the emittance in each degree
of freedom is given by

ε =
√
〈x2〉

√
〈x′2〉1, (39)

where the subscript on the angular term indicates that the angle information is
obtained from a single slit image.

For this single image, we have

〈x2〉1 = 〈x2
0〉+ 2〈x0x

′〉+ L2〈x2〉1. (40)

Here, L is the distance from the slit to the downstream viewing screen, the
subscript on x means that it is measured at the slit, and no subscript is placed
on x′ since I assume that there is no transverse deflection between slit and
screen.
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If we assume that the slit of width w is uniformly illuminated, then 〈x2
0〉 =

w2/12, and Eq. 40 turns into

〈x′2〉1 =
1
L2

[
〈x2〉1 −

w2

12
− 2〈x0x

′〉1
]
. (41)

In the error analysis we’ll need a way of putting a limit on the single slit corre-
lation term.

To simplify the expressions below, the rms deviations from the mean at the
position of the slits will be denoted by sx, sy, with x the narrow dimension;
s′x, s

′
y will be the rms deviations from the mean in angle from Eq. 41. The flat

beam emittance ratio is given by

Ryx =
sys
′
y

sxs′x
=
εy
εx
. (42)

In Ryx, some cancellation of resolution terms takes place, in comparison with
the emittances ss′ themselves.

Interesting though Ryx is by itself (demonstration of a significant value for
it was the goal of the first phase of the experiment), the other important ratio
is a measure of how well the round beam emittance is preserved. This means
that it is necessary to measure the round beam emittance, εr, under the same
conditions as those during the determination of Ryx, and calculate the ratio

Rfr =
√
εxεy

εr
. (43)

In stating emittances, the more familiar normalized variant would be used,
obtained by multiplying any ε above by γ(v/c).

4.2 Remarks on Procedure

A beam pulse contains a number of bunches, thus each image represents a
superposition of these bunches. The charge varies from bunch to bunch, so the
charge associated with an image is a range rather than a value. More on this
later under the heading of errors.

The file of images for a screen contains a number of order 10 with the laser
shutter open and a similar number with laser shutter closed (dark current). Each
image contains a random background. In order to suppress the background, a
few pictures with beam are averaged as are a few with dark current. The beam
images may be adjusted in position or orientation to achieve superposition.

The dark current average is then subtracted from the beam average. Given
the 0–255 grey scale, some background locations will inevitably go “negative”
and appear as bright spots. Since the brightest spot in the beam tends to
be much less than 255, some number (e.g., 50) can be added to each pixel to
eliminate the bright spots.

Next, projections are taken in the two degrees of freedom. The entire image is
used, unless there is some feature such as strong s-shape that can be reasonably
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excluded. The distributions associated with the projections may require baseline
adjusted. The rms deviations from the mean may then be calculated.
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